

I B. Tech II Semester Regular Examinations, September-2021 **MATHEMATICS-II**

(Com. to All Branches)

Tir	ne: 3	3 hours	Max.	Marks: 70
		Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks		
1.	a)	Reduce the matrix $A = \begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$ to its normal form and hence find	the	(7M)
		rank.		
	b)	Show that the only real value of λ for which the following equations have r trivial solution is 6 and solve them, when $\lambda=6$. $x+2y+3z=\lambda x$; $3x+y+z=\lambda y$; $2x+3y+z=\lambda z$.	10n-	(7M)
		Or		
2.	a)	Prove that the product of the Eigen values is equal to determinant of the ma	ıtrix.	(7M)
	b)	Test the consistency of the system $x+y+z=6$, $x-y+2z=5$, $3x+y+z=-8$, here solve. UNIT-II	nce	(7M)
3.	a)			(7M)
5.	u)	Verify Cayley -Hamilton theorem for the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ also find	1 A ⁻¹	(/101)
	b)	Find the nature, rank, index and signature of the quadratic from by reduce is canonical form $x^2 + y^2 + 2z^2 + 2xy - 4xz + 4yz$ Or	n to	(7M)
4.	a)	Find the orthogonal matrix P such that A is diagonalize where A = $\begin{bmatrix} 2 & 0 \\ 0 & 6 \\ 4 & 0 \end{bmatrix}$	4 0 2	(7M)
	b)	Find the nature, rank, index and signature of the quadratic from by reduce i canonical form $2x^2 + y^2 - 3z^2 + 12xy - 4xz - 8yz$.	n	(7M)
		UNIT-III		
5.	a)	Find the real root of the equation $x = sinx$ using bisection method.		(7M)
	b)	Find the real root of the equation $x^3-x-1 = 0$ using iteration method.		(7M)
6	c)	Or Find the real root of the equation tany - y using Newton Bankson method		
6.	a) b)	Find the real root of the equation $\tan x = x$ using Newton Raphson method Solve the following system of equations using Gauss-Jacobi method 8x - 3y + 2z = 20, $4x + 11y - z = 33$, $6x + 3y + 12z = 35$		(7M) (7M)

|"|'||||"|"||||

SET - 1

(7M)

(7M)

UNIT-IV

7. a) Fit a polynomial for the following data (7M) $y_0 = -5, y_1 = -1, y_2 = 9, y_3 = 25, y_4 = 55, y_5 = 105$

b)	b) Find the y(4) for the following data						
	Х	0	2	3	6		
	у	707	819	866	966		

Or

8. a) Prove that
$$1 + \mu^2 \delta^2 = \left(1 + \frac{1}{2} \delta^2\right)^2$$

b) Interpolate by means of Gauss's backward formula, the population of a town for the year 1974, given that (7M)

year	1939	1949	1959	1969	1979	1989
population	12	15	20	27	39	52

UNIT-V

- 9. a) Evaluate $\int_0^1 x^3 dx$ using Simpson's 1/3rd and Simpson's 3/8th Rules. (7M)
 - b) Find y(0.1) using Picard's If $\frac{dy}{dx} = 2e^x + y$, y(0) = 1 (7M)

Or

- 10 a) Find y(0.1), y(0.2) using Taylor's series method If $\frac{dy}{dx} = e^x 2y$, y(0) = 1 (7M)
 - b) Find the solution of $\frac{dy}{dx} = x y$, y (0) =1at x=0.1, 0.2, 0.3, 0.4& 0.5 using Euler's (7M)

method.

2 of 2

|"|'||||'|